Characterization of superconductivity in electron-doped LnOBi$_2$S$_2$ compounds with specific heat measurements1 BENJAMIN WHITE, DUYGU YAZICI, KEVIN HUANG, ALAN CHANG, AARON FRIEDMAN, M. BRIAN MAPLE, University of California, San Diego — Superconductivity has been reported recently in Bi$_4$O$_3$S$_3$ and electron-doped LnOBi$_2$S$_2$ compounds with $Ln = La$, Ce, Pr, Nd, Yb. These materials share a similar crystal structure composed of superconducting Bi$_2$S$_2$ layers, which are separated by oxide blocking layers. Early studies have concentrated primarily on the electrical transport properties and magnetic susceptibility measurements of these systems. We present results from specific heat measurements, which were performed in order to study and characterize the superconducting and normal-state properties of several electron-doped LnOBi$_2$S$_2$ systems.

1Sample synthesis was supported by the US AFOSR MURI grant FA9550-09-1-0603 and heat capacity measurements were conducted under the auspices of the US DOE grant DE-FG02-04-ER46105.

Benjamin White
University of California, San Diego

Date submitted: 05 Nov 2012

Electronic form version 1.4