Computational Study of Electron-Phonon Coupling in Crystalline
Organic Semiconductors

NENAD VUKMIROVIC, Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, CHRISTOPH BRUDER, VLADIMIR M. STOJANOVIC, Department of Physics, University of Basel, Basel, Switzerland — Despite wide interest in organic molecular crystals and the recognition that electron-phonon (e-ph) coupling strength crucially determines the nature of charge carriers in these materials, ab-initio studies of e-ph coupling elements in these materials are still lacking. In this work [1], we calculated the e-ph coupling elements throughout the whole Brillouin zone in crystalline naphthalene using density functional perturbation theory within the generalized gradient approximation. Fourier-Wannier interpolation scheme [2] was then used to obtain the e-ph coupling constants on a fine k-point grid necessary for accurate evaluation of physical properties. Using the obtained e-ph coupling elements, we evaluated the quasiparticle residues for electrons and holes, obtaining the values of 0.74 and 0.78, respectively. These values suggest that e-ph coupling strength is insufficient for formation of small polarons in crystalline naphthalene and other oligoacene semiconductors. [1] N. Vukmirovic, C. Bruder, and V. M. Stojanovic, Phys. Rev. Lett. 109, 126407 (2012). [2] F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. B 76, 165108 (2007).

1NV was supported by FP7 Marie Curie Career Integration Grant (ELECTROMAT), the Serbian Ministry of Science (ON171017) and FP7 Projects PRACE-2IP, PRACE-3IP, HP-SEE, and EGI- InSPIRE. VMS and CB were supported by the Swiss NSF and the NCCR Nanoscience.

Nenad Vukmirovic
Institute of Physics Belgrade

Date submitted: 06 Nov 2012
Electronic form version 1.4