Measuring the Charge Parity of an InAs Double Quantum Dot

M.D. SCHROER, M. JUNG, K.D. PETERSSON, J.R. PETTA, Princeton University — We have fabricated tunable, few electron InAs nanowire double quantum dots (DQDs) which support rapid electrically driven single spin rotations. However, the measurement of nanowire DQDs presents an outstanding problem, typically relying on transport through the sample due to the lack of a local quantum point contact charge detector. We demonstrate a non-invasive charge sensing method based on a radio frequency measurement of the sample’s complex admittance, which yields a fast and sensitive determination of the charge state. We show that this measurement is also sensitive to the spin state of the DQD, allowing a simple determination of the total charge parity in the sample. Radio frequency charge parity measurement may prove useful in high effective mass systems, such as Si/SiGe quantum dots, where the determination of the absolute charge number is not always feasible.

1Supported by the Sloan and Packard Foundations, ARO, DARPA, and the NSF.

Michael Schroer
Princeton University

Date submitted: 08 Nov 2012

Electronic form version 1.4