Compresssion of HgCr\(_2\)S\(_4\) and HgCr\(_2\)Se\(_4\) spinels

I. EFTHYMIOPoulos, Dept. Physics, OU, MI-48309, A. YARESKO, MPI-FKF, D-70569, Stuttgart, V. TSURKAN, IAP, MD-2028 Chisinau & University of Augsburg, D-86159, J. DEISENHOFER, A. LOIDL, University of Augsburg, D-86159, C. PARK, HPCAT, Argonne, IL-60439, Y. WANG, Dept. Physics, OU, MI-48309, WANG GROUP TEAM, YARESKO COLLABORATION, IAP COLLABORATION, LOIDL COLLABORATION, HPCAT COLLABORATION — The family of ACr\(_2\)X\(_4\) spinels constitutes a prototype system for studying magnetism in solids [1]. More recently, members of this series were found to exhibit multiferroicity [2]. The origin of the ferroic properties is unknown; the role of the structure, however, appears to be important [3]. Given the strong interplay between structural and ferroic properties in these systems, structural tuning by pressure can provide valuable hints for multiferroicity. We have performed high-pressure structural investigations on the multiferroic HgCr\(_2\)S\(_4\) and the HgCr\(_2\)Se\(_4\) compounds. HgCr\(_2\)S\(_4\) exhibits three structural transitions: the starting cubic phase adopts a tetragonal structure at 20 GPa, at 27 GPa an orthorhombic distortion occurs, and a third transition takes place above 37 GPa. As for HgCr\(_2\)Se\(_4\), our studies detect a structural transition at 14 GPa, near the theoretically predicted band gap closure [4]. We discuss the possible mechanisms for the observed phase transitions for both Cr-spinels.