Abstract Submitted
for the MAR13 Meeting of
The American Physical Society

Novel electronic transition in layered IrTe$_2$

YOON SEOK OH, Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, J.J. YANG, Laboratory for Pohang Emergent materials, Postech, Korea, Y. HORIBE, S.-W. CHEONG, Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University — Layered chalcogenides such as 1T-TaS$_2$, 1T-TiSe$_2$, Bi$_2$Se$_3$, and MoS$_2$ exhibit rich low-dimensional physical properties such as superconductivity, topological insulator, charge density waves (CDW), and field-effect-transistor with high mobility. IrTe$_2$ forms in the layered CdI$_2$ structure, and exhibits diamagnetism and superlattice modulations below \sim260 K. In addition, superconductivity appears when the \sim260 K transition is fully suppressed by, for example, chemical doping. The origin of the \sim260 K transition in IrTe$_2$ has been controversial. It was claimed to be a structural transition, which suppresses electronic conduction. It was also reported that Fermi surface instability drives the transition - *i.e.* it is charge density wave-type. In this talk, we present our comprehensive studies on electron diffraction and transport experiments under chemical/hydrostatic pressure to unveil the origin of the novel electronic transition in IrTe$_2$.

Yoon Seok Oh
Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University

Date submitted: 08 Nov 2012

Electronic form version 1.4