Abstract Submitted for the MAR13 Meeting of The American Physical Society

Magnetism in parent Fe-chalcogenides: quantum fluctuations select a plaquette order¹ NATALIA PERKINS, SAMUEL DUCATMAN, AN-DREY CHUBUKOV, Physics Department UW Madison — The analysis of magnetism in parent compounds of iron-based superconductors (FeSCs) is an integral part of the program to understand the origin of superconductivity in these materials. Here we analyze magnetic order in iron-chalcogenide $Fe_{1+y}Te$ – the parent compound of high-temperature superconductor $\operatorname{Fe}_{1+y}\operatorname{Te}_{1-x}\operatorname{Se}_x$. Neutron scattering experiments show that magnetic order in this material contains components with momentum $Q_1 = (\pi/2, \pi/2)$ and $Q_2 = (\pi/2, -\pi/2)$ in Fe-only Brillouin zone. The actual spin order depends on the interplay between these two components. Previous works argued that spin order is a single-Q state (either Q_1 or Q_2). Such an order breaks rotational C_4 symmetry and order spins into a double diagonal stripe. We show that quantum fluctuations actually select another order -a double Q plaquette state with equal weight of Q_1 and Q_2 components, which preserves C_4 symmetry but breaks Z_4 translational symmetry. We argue that the plaquette state is consistent with recent neutron scattering experiments on Fe_{1+u} Te.

¹supported by the grant NSF-DMR-0844115

Natalia Perkins Physics Department UW Madison

Date submitted: 06 Nov 2012

Electronic form version 1.4