Abstract Submitted for the MAR13 Meeting of The American Physical Society

Designing ferromagnetism in early transition metal oxides in bulk and superlattice forms¹ HUNG DANG, ANDREW MILLIS, Department of Physics, Columbia University — The circumstances under which early transition metal oxides could exhibit ferromagnetism are determined using density functional plus single-site dynamical mean field methods. Particular attention is paid to the consequences of the GdFeO₃ distortion and other octahedral rotations. Ferromagnetism is favored by the combination of intermediate carrier concentration (formal valence ~ $d^{1.5}$) and large tilt angle. The decrease of GdFeO₃ distortion amplitude with hole doping away from d^2 is shown to keep the bulk solid solution La_{1-x}Sr_xVO₃ outside of the ferromagnetic regime. In superlattices such as (LaVO₃)_m(SrVO₃)₁, carrier concentration and tilt angle may be decoupled, potentially enabling ferromagnetism as suggested by experiment[1].

 U. Lüders, W. C. Sheets, A. David, W. Prellier, and R. Frésard, Phys. Rev. B 80, 241102(R) (2009).

¹Supported by the Basic Energy Sciences Program of the US Department of Energy under grant DOE ER046169.

Hung Dang Department of Physics, Columbia University

Date submitted: 06 Nov 2012

Electronic form version 1.4