Abstract Submitted for the MAR13 Meeting of The American Physical Society

Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with $S=(1/2)^1$ RACHEL GLENN, WILLIAM BAKER, CHRISTOPH BOEHME, MIKHAIL RAIKH, University of Utah — We study theoretically and experimentally the Fourier content, F(s), of the Rabi oscillations in photoconductivity coming from pairs of spin- $\frac{1}{2}$ localized carriers. Upon increasing the ac drive, the Fourier spectrum evolves from a single peak at $s = \Omega_R$, where Ω_R is the Rabi frequency, to three peaks at $s = \Omega_R$, $s = 2\Omega_R$, and at low $s \ll \Omega_R$. The crossover between the two regimes takes place when Ω_R exceeds the broadening, δ_0 , of Zeeman levels due to disorder, e.g., hyperfine field. We capture this crossover within the analytical treatment by calculating the shapes of all three peaks at arbitrary relation between Ω_R and δ_0 . When the peaks are well-developed their widths are $\Delta s \sim \delta_0^2/\Omega_R$. Good agreement of theory and experiment allowed us to infer the experimental value of δ_0 .

¹Supported by NSF DMR-1121252

Mikhail Raikh University of Utah

Date submitted: 11 Nov 2012

Electronic form version 1.4