Self-pinning by colloids confined at a contact line1 BYUNG MOOK WEON2, JUNG HO JE3, Pohang University of Science and Technology — Colloidal particles suspended in a fluid usually inhibit complete wetting of the fluid on a solid surface and cause pinning of the contact line, known as self-pinning. We show differences in spreading and drying behaviors of pure and colloidal droplets using optical and confocal imaging methods. These differences come from spreading inhibition by colloids confined at a contact line. We propose a self-pinning mechanism based on spreading inhibition by colloids. We find a good agreement between the mechanism and the experimental result taken by directly tracking individual colloids near the contact lines of evaporating colloidal droplets.

1This research was supported by the Creative Research Initiatives (Functional X-ray Imaging) of MEST/NRF.
2Research Assistant Professor
3Professor

Byung Mook Weon
Pohang University of Science and Technology

Date submitted: 06 Nov 2012

Electronic form version 1.4