Phonon Softenings and the Mott-spin-Peierls Transition in VO$_2$
SOORAN KIM, KYOO KIM, CHANG-JONG KANG, B.I. MIN, POSTECH —
To explore the driving mechanisms of the metal-insulator transition (MIT) and the
structural transition in VO$_2$, we have investigated phonon dispersions of rutile VO$_2$
(R-VO$_2$) in the DFT and the DFT+U (U: Coulomb correlation) band calculations.
We have found that the phonon softening instabilities occur in both cases, but the
softened phonon mode only in the DFT+U describes properly both the MIT and
the structural transition from R-VO$_2$ to monoclinic VO$_2$ (M_1-VO$_2$). The present
ab-initio phonon dispersion calculations clearly demonstrate that the Coulomb cor-
relation effect plays an essential role of assisting the Peierls transition in R-VO$_2$ and
producing the spin-Peierls ground state in M_1-VO$_2$.

Sooran Kim
POSTECH

Date submitted: 07 Nov 2012

Electronic form version 1.4