Abstract Submitted for the MAR13 Meeting of The American Physical Society

Metastable low-spin character of Co^{2+} and the control of spin state transition BONGJAE KIM, B. I. MIN, POSTECH — We have studied different spin states of the octahedrally coordinated Co^{2+} systems. For every tested systems, we found metastable character of low-spin phase and, interestingly, the energy differences between the high-spin and low-spin phases are similar regardless of the anion (X) type, Co^{+2} -X bond lengths and CoX_6 octahedron distortion. For CoCl_2 as a model system, we studied pressure-induced high-spin to low-spin state transition, which is governed by J/Δ_{CF} value (J: exchange parameter, Δ_{CF} : crystal-field parameter). CoCl_2 shows sudden collapse of volume and spin moment at the point of spin state transition together with the insulator-to-metal transition. Unlike the other transition-metal oxides, which shows pressure-driven Mott-type transition, physics of CoCl_2 is determined mainly by J and Δ_{CF} , not by U and W.

Bongjae Kim POSTECH

Date submitted: 07 Nov 2012 Electronic form version 1.4