Abstract Submitted for the MAR13 Meeting of The American Physical Society

Electronic Structure and Superconductivity Bilayer FeSe\SrTiO₃ Films XU LIU, National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China, WENHAO ZHANG, State Key Lab of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China, JUN-FENG HE, LIN ZHAO, DEFA LIU, SHAOLONG HE, National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China, CHUANGTIAN CHEN, ZUYAN XU, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China, XUCUN MA, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, QIKUN XUE, State Key Lab of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China, XINGJIANG ZHOU, National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China — We have carried out high resolution angle-resolved photoemission (ARPES) measurements on bilayer FeSe films grown on the $SrTiO_3(001)$ substrate by the MBE method. Detailed doping evolution of the electronic structure has been investigated through an annealing process. Similar to the single-layer FeSe film, two phases are observed during the annealing process which coexist and compete. On the other hand, the bilayer FeSe film exhibits obviously different behaviors from that of the single layer FeSe film. Details of the experiment and their implications will be discussed.

> Xu Liu National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China

Date submitted: 11 Nov 2012 Electronic form version 1.4