The effect of non-magnetic impurities on the motion of a hole in a 2D Ising antiferromagnet

HADI EBRAHIMNEJAD, MONA BERCIU, University of British Columbia, MONA BERCIU'S TEAM — A hole in a 2D Ising antiferromagnet was initially believed to be infinitely heavy due to the string of wrongly-oriented spins it creates as it propagates, which trap it near its original location. Trugman showed that, in fact, the hole acquires a finite effective mass due to contributions from so-called Trugman loops processes, where the hole goes one and a half times around a closed loop and removes the defects it created during the first round, but ends up at a different site. This results in an effective next-nearest-neighbour hoping of the hole which keeps it on the sublattice it was created on. Here we investigate the trapping of such a hole near a single non-magnetic impurity, using a variational calculation of the hole’s real-space Green’s function. We consider the two cases with the hole and impurity being on the same versus on different sublattices, and contrast the differences between them.

This work was supported by NSERC, CIFAR, and QMI.

Hadi Ebrahimnejad
University of British Columbia

Date submitted: 07 Nov 2012

Electronic form version 1.4