Temperature-dependent classical phonons from efficient non-dynamical simulations

JORGE INIGUEZ, MATHIAS P. LJUNGBERG, ICMAB-CSIC — We describe a rigorous approach to the calculation of classic lattice-dynamical quantities from simulations that do not require an explicit consideration of the time evolution. We focus on the temperature-dependent vibrational spectrum. We start from the usual moment expansion of the relevant time correlation function (position-position or velocity-velocity) for a many-body system, and show that it can be conveniently split into one-body-like contributions by using a basis in which the low-order terms are diagonal. This allows us to compute the main spectral features (e.g., position and width of the phonon peaks) from thermal averages readily available from any statistical simulation. We demonstrate our method with an application to a model system that presents a structural transition and strongly temperature-dependent phonons. Our theory justifies and clarifies the status of previous heuristic schemes to estimate phonon frequencies in a computationally efficient way.

Supported by the EC-FP7 project OxIDes (Grant No. CP-FP 228989-2) and MINECO-Spain (Grants No. MAT2010-18113, No. MAT2010-10093-E, and No. CSD2007-00041)