Abstract Submitted for the MAR13 Meeting of The American Physical Society

Numerical evidence against both mean field and droplet scenarios of the Edwards-Anderson model JULIO F. FERNANDEZ, Universidad de Zaragoza, Spain, JUAN J. ALONSO, Universidad de Granada, Spain — From tempered Monte Carlo simulations, we have obtained accurate probability distributions p(q) of the spin-overlap parameter q for finite Edwards-Anderson (EA) and Sherrington-Kirkpatrick (SK) spin-glass systems at low temperatures. Our results for p(q) follow from averages over 10⁵ disordered samples of linear sizes L = 4-8 and over 15 000 samples for L = 10. In both the SK and EA models, at temperatures as low as $0.2T_{sg}$, where T_{sg} is the transition temperature, p(q) varies insignificantly with L. This does not fit the trend that the droplet model predicts for large L. We have also calculated correlation functions, $F(q_1, q_2)$, from which rms deviations, δp , over different realizations of quenched disorder, as well as thermal fluctuations, w, of q values, follow. Our numerical results for δp and w scale as \sqrt{L} and 1/L, respectively, in the SK model. This fits in well with mean field predictions. On the other hand, our data for w and δp vary little, if at all, for the EA model.

> Julio F. Fernandez Universidad de Zaragoza, Spain

Date submitted: 07 Nov 2012

Electronic form version 1.4