Strain-Mediated Photocontrol in Core-Shell Prussian Blue Analogue Particles

ELISABETH S. KNOWLES, MARCUS K. PEPRAH, MARK W. MEISEL, Dept. Phys. and NHMFL, Univ. Florida, CARISSA H. LI, OLIVIA N. RISSET, MATTHEW J. ANDRUS, DANIEL R. TALHAM, Dept. Chem., Univ. Florida — The Prussian blue analogue (PBA), \(A_i\text{Ni}[\text{Cr(CN)}_6]_{jn} \cdot n\text{H}_2\text{O} \ (A)\), has been shown to exhibit a pressure-induced decrease in magnetization under both external isotropic pressure and internal photoinduced structural strain when layered with \(\text{Rb}_2\text{Co}[\text{Fe(CN)}_6]_{jn} \cdot n\text{H}_2\text{O} \ (B)\). Current investigations of a series of core-shell PBAs, consisting of the photoactive ferrimagnetic \(B\) surrounded by ferromagnetic \(A\), quantitatively model this photoinduced phenomenon, which is shown to affect both the magnetic moment and superexchange of roughly half the volume of the \(A\) shells. An accurate understanding of the mechanism of strain-mediated photocontrol in these heterostructures will allow the pursuit of rationally designed room temperature photocontrol systems by incorporating pressure-sensitive materials with higher magnetic ordering temperatures.

1 We acknowledge early contributions to this work by M. F. Dumont and D. M. Pajerowski. Supported by NSF DMR-1202033 (MWM), DMR-1005581 (DRT), DMR-0654118 (NHMFL), and the State of Florida.

Elisabeth S. Knowles
Dept. Phys. and NHMFL, Univ. Florida

Date submitted: 12 Nov 2012 Electronic form version 1.4