Taming the flow of light via active magneto-optical impurities1

SAMUEL KALISH, HAMIDREZA RAMEZANI, ZIN LIN, TSAMPIKOS KOTTOS, Department of Physics, Wesleyan University, Middletown, CT-06459, USA, VASSILIOS KOVANIS, ILYA VITEBSKIY, Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, OH 45433 USA — We demonstrate that the interplay of a magneto-optical layer sandwiched between two judiciously balanced gain and loss layers which are both birefringent with misaligned in-plane anisotropy, induces unidirectional electromagnetic modes. Embedding one such optically active non-reciprocal unit between a pair of birefringent Bragg reflectors, results in an exceptionally strong asymmetry in light transmission. Remarkably, such asymmetry persists regardless of the incident light polarization. This photonic architecture may be used as the building block for chip-scale non-reciprocal devices such as optical isolators and circulators.

1This research was supported by an AFOSR No. FA 9550-10-1-0433 grant and LRIR 09RY04COR grant, and by an NSF ECCS-1128571 grant.