Interacting drift-diffusion theory for photoexcited electron-hole gratings in semiconductor quantum wells1 KA SHEN, GIOVANNI VIGNALE, University of Missouri-Columbia — Phase-resolved transient grating spectroscopy in semiconductor quantum wells has been shown to be a powerful technique for measuring such an elusive quantity as the electron-hole drag resistivity ρ_{eh}, which depends on the Coulomb interaction between the carriers. In this paper we develop the interacting drift-diffusion theory, from which ρ_{eh} can be determined, given the measured mobility of an electron-hole grating. From this theory we predict a crossover from a high-excitation-density regime, in which the mobility has the “normal” positive value, to a low-density regime, in which Coulomb-drag dominates and the mobility becomes negative. At the crossover point, the mobility of the grating vanishes.

1Work supported by ARO Grant No. W911NF-08-1-0317 (KS) and from NSF Grant DMR-1104788 (GV).