Abstract Submitted for the MAR13 Meeting of The American Physical Society

Low Temperature Transport Properties of $Bi_{2-x}Tl_xTe_3$ Single Crystals¹ HANG CHI, CTIRAD UHER, University of Michigan, USA, PETR LOSTAK, CESTMIR DRASAR, University of Pardubice, Czech Republic — We show that Tl-doping progressively changes the electrical conduction of $Bi_{2-x}Tl_xTe_3$ (x = 0 - 0.30) single crystals from p-type $(0 \le x \le 0.08)$ to n-type $(0.12 \le x \le 0.30)$, which is observed via measurements of both the Seebeck coefficient and the Hall effect performed in the crystallographic *ab*-plane in the temperature range of 2K-300K. The temperature dependent electrical resistivity in the *ab*-plane of $\text{Bi}_{2-x}\text{Tl}_x\text{Te}_3$ maintains its metallic character with the decreasing hole density at low doping levels of $0 \le x \le 0.05$. Heavier Tl-doping with $0.08 \le x \le 0.12$ drives the electrical resistivity into a prominent non-metallic regime, associated with characteristic metal-insulatormetal transitions upon cooling down from 200K. For even more Tl-doped samples, $0.20 \le x \le 0.30$, the system reverts back into the metallic state. Thermal conductivity measurements of $Bi_{2-x}Tl_xTe_3$ single crystals reveal a progressively stronger point defect scattering of phonon with the increasing Tl content. The systematic evolution of transport properties suggests that the Fermi level of Bi₂Te₃ which initially lies in the valence band (for x = 0), is gradually shifted, with increasing Tl-doping, toward the top of the valence band (for $0.01 \le x \le 0.05$), then into the band gap (for $0.08 \le x \le 0.10$), and eventually into the conduction band (for $0.20 \le x \le 0.30$).

¹This work is supported by CSTEC, a U.S. DOE EFRC, under Award Number DE-SC0000957.

Hang Chi Department of Physics, University of Michigan

Date submitted: 12 Nov 2012

Electronic form version 1.4