A first-principles study of a single-molecule magnet Mn12 adsorbed on Bi(111)1 KYUNGWHA PARK, Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA, JUN-ZHONG WANG, School of Physical Science and Technology, Southwest Univ., Chongqing 400715, China — Recently, elemental Bi and Bi-based alloys have attracted a lot of attention due to unique quantum properties of their surface states induced by strong spin-orbit coupling. A single-molecule magnet Mn12 is known to be a prototype molecular magnet with significant magnetic anisotropy caused by spin-orbit coupling. Despite a great effort to fabricate monolayers of single-molecule magnets on various substrates, there are few studies of single-molecule magnets on strongly spin-orbit coupled substrates. Here we present our theoretical study of electronic and magnetic properties of single-molecule magnets Mn12 adsorbed on a strongly spin-orbit coupled semi-metallic Bi surface without any linker molecules. This work was motivated by a recent low-temperature scanning tunneling microscopy (STM) experiment where individual single-molecule magnets Mn12 were grafted on Bi. We apply density-functional theory (DFT) including on-site Coulomb repulsion U and self-consistent spin-orbit coupling, to two adsorption geometries of Mn12 on Bi. We compare our calculated electronic and magnetic properties of the Mn12 molecule on Bi with those of an isolated Mn12.

1supported by NSF-DMR-0804665, 1206354, SDSC DMR060009N.

Kyungwha Park
Department of Physics, Virginia Tech, Blacksburg, VA 24061

Date submitted: 08 Nov 2012

Electronic form version 1.4