Abstract Submitted for the MAR13 Meeting of The American Physical Society

Hydrostatic and chemical pressure tuning of CeFeAs_{1-x}P_xO single crystals: The intriguing interaction between 3d- and 4f-correlations¹ M. NICKLAS, K. MYDEEN, E. LENGYEL, A. JESCHE², C. GEIBEL, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany — We present a combined P-substitution and hydrostatic pressure study on CeFeAs_{1-x}P_xO single crystals in order to investigate the peculiar relationship of the local moment magnetism of Ce, the ordering of itinerant Fe moments, and their connection with the occurrence of superconductivity [1,2]. Our results evidence a close relationship between the weakening of Fe magnetism and the change from antiferromagnetic to ferromagnetic ordering of Ce moments at $p^* = 1.95$ GPa in CeFeAs_{0.78}P_{0.22}O. The absence of superconductivity in CeFeAs_{0.78}P_{0.22}O and the presence of a narrow and strongly pressure sensitive superconducting phase in CeFeAs_{0.70}P_{0.30}O and CeFeAs_{0.65}P_{0.35}O indicate the detrimental effect of the Ce magnetism on superconductivity in P-substituted CeFeAsO.

- [1] A. Jesche, T. Förster, J. Spehling, M. Nicklas, M. de Souza, R. Gumeniuk, H. Luetkens, T. Goltz, C. Krellner, M. Lang, J. Sichelschmidt, H.-H. Klauss, and C. Geibel, Phys. Rev. B 86, 020501(R) (2012).
- [2] K. Mydeen, E. Lengyel, A. Jesche, C. Geibel, and M. Nicklas, Phys. Rev. B 86, 134523 (2012).

Michael Nicklas Max Planck Institute for Chemical Physics of Solids

Date submitted: 04 Dec 2012 Electronic form version 1.4

¹This work was supported by the DFG within the framework of the SPP1458.

²Present Address: The Ames Laboratory, Iowa State University, Ames, Iowa USA