Abstract Submitted for the MAR13 Meeting of The American Physical Society

Structure change, layer sliding, and metallization in highpressure MoS2¹ ERIO TOSATTI, SISSA, ICTP, CNR-IOM Democritos, LIL-IANA HROMADOVA, ROMAN MARTONAK, Comenius University Bratislava — Based on ab initio calculations and metadynamics simulations, we predict that 2H-MoS₂, a layered insulator, will metallize under pressures in excess of 20-30 GPa. In the same pressure range, simulations and enthalpy optimization predict a structural transition. Reminiscent of this material's frictional properties, free mutual sliding of layers takes place at this transition, where the original $2H_c$ stacking changes to a $2H_a$ stacking typical of 2H-NbSe₂, a transformation which explains for the first time previously mysterious X-ray diffraction data. Phonon and electron phonon calculations suggest that metallic pristine MoS₂ will require ultrahigh pressures in order to develop superconductivity.

¹Supported by EU-Japan Project LEMSUPER, by a SNF Sinergia Project, and by the Slovak Research and Development Agency

> Erio Tosatti SISSA, ICTP, CNR-IOM Democritos

Date submitted: 08 Nov 2012

Electronic form version 1.4