Abstract Submitted for the MAR13 Meeting of The American Physical Society

Crystalline and Magnetic Anisotropy of the 3d Transistion-Metal Oxides ANDREAS SCHRON, Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany, CLAUDIA RODL, Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM, 91128 Palaiseau, France, FRIEDHELM BECHSTEDT, Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany — The 3d transition-metal oxides (TMOs) are subject of debate since many decades due to their extraordinary properties, such as the formation of an antiferromagnetic ordering AFM2 below their Néel temperature. Many studies, both experimental and theoretical, focus only on MnO and NiO, where the crystalline anisotropy is solely driven by exchange striction along the unique symmetry axis in the [111] direction and where the magnetic anisotropy is explained in terms of magnetic dipole interactions. In the other TMOs, FeO and CoO, however, orbital magnetization and spin-orbit interaction play an additional, yet crucial role for both crystalline and magnetic anisotropy. We present density-functional theory (DFT) studies including an on-site interaction U of the crystalline and magnetic anisotropy of the electronic systems with non-collinear spins. The influence of the (semi-)local description of exchange and correlation (XC) by means of the local density approximation (LDA) and generalized gradient approximation (GGA) on the orbital moments in FeO and CoO and the implications on the aforementioned properties is investigated. We discuss the quenching of the orbital magnetization due to the gradient corrections.

> Andreas Schrön Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Date submitted: 26 Nov 2012

Electronic form version 1.4