Abstract Submitted for the MAR13 Meeting of The American Physical Society

Enhanced

thermoelectric properties via oxygen non-stoichiometry in La_2NiO_4 and SrTiO₃ VICTOR PARDO, ANTIA S. BOTANA, Departamento Fisica Aplicada, Universidade Santiago de Compostela, Spain, PAUL M. BACH, VICTOR LEBO-RAN, FRANCISCO RIVADULLA, CIQUS, Universidade Santiago de Compostela, Spain, DANIEL BALDOMIR, Departamento Fisica Aplicada, Universidade Santiago de Compostela, Spain — We present the results of transport properties calculations and experiments on various oxides. A large enhancement of the thermoelectric properties is predicted¹ via ab initio calculations for $La_2NiO_{4+\delta}$, with electroniconly thermoelectric figure of merit (zT) values exceeding unity for oxygen excess δ ≤ 0.10 . The effects of lattice strain (caused, e.g. by growth of thin films on different substrates) enhance even further the thermoelectric response. A similar result is obtained at very low electron-doping in bulk $SrTiO_3$ via oxygen removal. This is analyzed experimentally via thermal annealing that depletes oxygen (~ 1 oxygen vacancy per 10^6 unit cells). In both these systems, the increase in conductivity reached in the metallic limit retains a large thermopower, with the corresponding enhancement of zT. In the case of SrTiO₃, experiments indicate² that such a small oxygen vacancy level reduces drastically the thermal conductivity by introducing random scattering centers. In the talk, we will discuss the electronic structure origin of the enhancement of the thermoelectric response and how this can be tuned. Results are general and applicable to other non-stoichiometric oxides.

¹PRB 86, 165114 (2012). ²arxiv:1211.1615.

> Victor Pardo Departamento Fisica Aplicada, Universidade Santiago de Compostela, Spain

Date submitted: 26 Nov 2012

Electronic form version 1.4