Stability and Meta-stability of Clusters in a Reactive Atmosphere: Theoretical Evidence for Unexpected Stoichiometries of Mg$_M$O$_x$.

SASWATA BHATTACHARYA, SERGEY V. LEVCHENKO, LUCA M. GHIRINGHELLI, MATTHIAS SCHEFFLER, Fritz Haber Institute of the Max Planck Society — Applying genetic algorithm and replica exchange molecular dynamics in a cascade approach we calculate structure and composition of Mg$_M$O$_x$ clusters at realistic temperatures and oxygen pressures. The cascade starts with force field and goes up to density functional theory with exact exchange plus correlation in the random phase approximation. The stable compositions are identified using ab initio atomistic thermodynamics. We find that at realistic environmental conditions small clusters ($M = 1$-5) are in thermodynamic equilibrium when $x > M$. Non-stoichiometric clusters are found to have in general higher spin multiplicity than stoichiometric ones. This suggests a possibility of tuning magnetic properties by changing environmental conditions.

We appreciate support from the cluster of excellence UniCat financed by the German Science Foundation (DFG).

Luca M. Ghiringhelli
Fritz Haber Institute of the Max Planck Society