Abstract Submitted for the MAR13 Meeting of The American Physical Society

Backscattering Between Helical Edge States via Dynamic Nuclear Polarization ADRIAN DEL MAESTRO, University of Vermont, TIMO HYART, BERND ROSENOW, Institute for Theoretical Physics, University of Leipzig — We describe how the non-equilibrium spin polarization of one dimensional helical edge states at the boundary of a two dimensional topological insulator can dynamically induce a polarization of nuclei via the hyperfine interaction. When combined with a spatially inhomogeneous Rashba coupling, the resulting steady state polarization of the nuclei produces backscattering between the topologically protected edge states leading to a reduction in the conductance which persists to zero temperature. We study these effects in both short and long edges, uncovering deviations from Ohmic transport at finite temperature and a current noise spectrum which may hold the fingerprints for experimental verification of the backscattering mechanism.

> Adrian Del Maestro University of Vermont

Date submitted: 08 Nov 2012

Electronic form version 1.4