Theoretical Evaluation of Cu-Sn-S and Cu-Sb-S Based Solar Absorbers for Earth-Abundant Thin-Film Solar Cells1 PAWEL ZAWADZKI, HAOWEI PENG, ANDRIY ZAKUTAYEV, STEPHAN LANY, National Renewable Energy Laboratory — Current thin-film solar absorbers such as Cu(In/Ga)Se\textsubscript{2} or CdTe, although remarkably efficient, incorporate limited-supply elements like indium or tellurium. Meeting the cost competitiveness criterion necessary for a large-scale deployment of thin-film PV technologies requires development of new earth-abundant solar absorbers. In an effort to accelerate such development we combine first principles theory and high throughput experiments to explore In-free ternary copper chalcogenides. As part of the theoretical evaluation, we study the Cu\textsubscript{2}SnS\textsubscript{3}, Cu\textsubscript{4}SnS\textsubscript{4}, CuSbS\textsubscript{2} and Cu\textsubscript{3}SbS\textsubscript{3} based compounds formed by isovalent alloying on Sn, Sb, and S sites. For this set of materials we predict band-structures and optical absorption coefficients and demonstrate the feasibility of achieving the optimal band gap of 1.3 eV for a single junction cell and a high optical absorption of $\sim 10^4$ cm-1 at $E_g+0.2$ eV. We additionally perform defect studies to elucidate the doping trends within this class of materials.

1The project “Rapid Development of Earth-abundant Thin Film Solar Cells” is supported as a part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.

Pawel Zawadzki
National Renewable Energy Laboratory

Date submitted: 26 Nov 2012

Electronic form version 1.4