Geometry and temperature dependence of low-frequency flux noise in dc SQUIDs S.M. ANTON, J.S. BIRENBAUM, S.R. O’KELLEY, UC Berkeley, D.S. GOLUBEV, G.C. HILTON, H.-M. CHO, K.D. IRWIN, NIST, Boulder, V. BOLKHOVSKY, D.A. BRAJE, G. FITCH, M. NEELEY, R.C. JOHN-SON, W.D. OLIVER, MIT Lincoln Laboratory, F.C. WELLSTOOD, Univ of Maryland, JOHN CLARKE, UC Berkeley — Measurements on dc SQUIDs reveal a flux noise spectral density $S_\Phi(f) = A^2/(f/1 \text{ Hz})^\alpha$. An analytic model assuming non-interacting spins localized at the surface of the SQUID loop predicts that the mean square noise scales as R/W—the radius and width of the loop, respectively. However, there are no established theories for the scaling of α with geometry or the dependences of A and α on temperature T. To test the predicted geometric scaling of this model experimentally, we measured flux noise in ten SQUIDs with systematically varying geometries. We find that, at fixed T, A^2 scales approximately as R. From the measured values of A and α, we estimate the mean square flux noise, which does not scale with R. As T is lowered, α increases significantly and in such a way that the spectra “pivot” about an approximately fixed frequency. This phenomenon implies that the mean square noise is temperature-dependent, an effect not predicted by the analytic model. We discuss our attempts to reconcile these discrepancies by considering the locking together of spins to form clusters.

1This work was supported by ARO, IARPA, and the US Government.