Abstract Submitted
for the MAR13 Meeting of
The American Physical Society

Controlling the metal insulator transition using the ferroelectric field effect in rare earth nickelates

MATTHEW MARSHALL, ANKIT DISA, DIVINE KUMAH, HANGHUI CHEN, SOHRAB ISMAIL-BEIGI, FRED WALKER, CHARLES AHN, Department of Applied Physics and Center for Research on Interface Structures and Phenomena (CRISP), Yale University — A ferroelectric field effect transistor (FE-FET) modulates conductivity in a non-volatile manner by electrostatically accumulating and depleting charge carriers at the interface between a conducting channel and ferroelectric gate. The rare earth nickelate LaNiO$_3$ is metallic in bulk, while other rare earth nickelates, such as NdNiO$_3$, exhibit metal-insulator transitions and anti-ferromagnetic behavior in the bulk. Here, we show that by coupling the ferroelectric polarization of Pb$_{0.8}$Zr$_{0.2}$TiO$_3$ (PZT) to the carriers in a nickelate, we can dynamically induce a metal-insulator transition in ultra-thin films of LaNiO$_3$, and induce large changes in the MIT transition temperature in NdNiO$_3$. Density functional theory is used to determine changes in the physical and electronic Ni-O-Ni bond angle of the nickelate at the interface between PZT and LaNiO$_3$. The effect of the ferroelectric polarization is to decrease the Ni-O-Ni bond angle from 180 degrees and increase the carrier effective mass. Related to this change in electronic structure, we observe a change in resistivity of approximately 80% at room temperature for an ultra-thin 3 unit cell thick film of LaNiO$_3$.

1Work supported by FENA and the NSF under MRSEC DMR 1119826.

Matthew Marshall
Department of Applied Physics and Center for Research on Interface Structures and Phenomena (CRISP), Yale University

Date submitted: 26 Nov 2012

Electronic form version 1.4