Abstract Submitted for the MAR13 Meeting of The American Physical Society

Surface Structure and Stability in Li_3PS_4 and Li_3PO_4 Electrolytes from First Principles¹ NICHOLAS LEPLEY, N.A.W. HOLZWARTH, Wake Forest University — Crystalline solid electrolyte materials continue to show considerable promise for lithium ion battery applications. Recent experiments on these materials² suggest that in some cases surface effects may play a significant role with regard to both stability and ionic conductivity. In this study, we extend our previous modeling work³ to an examination of idealized surfaces of several phases of Li_3PX_4 (X=O,S). Our preliminary results suggest that energy contributions from the surface affect the relative phase stability in Li_3PS_4 , although this is not observed in the phosphate analogue. Our presentation will focus on surface energies and structures, as well as examining the calculated stability of the interface between the electrolyte and lithium metal.

¹Supported by NSF Grant DMR-1105485.

²Chengdu Liang, ORNL, (private communication).
³N. A. W. Holzwarth, N. D. Lepley, Y. A. Du, J. Power Sources 196, 6870 (2011).

Nicholas Lepley Wake Forest University

Date submitted: 08 Nov 2012

Electronic form version 1.4