Thermopower Measurements of Highly Conducting Single-Molecule Devices

JONATHAN R. WIDAWSKY, WENBO CHEN, HECTOR VAZQUEZ, TAEKYEONG KIM, MARK S. HYBERTSEN, RONALD BRESLOW, LATHA VENKATARAMAN, Columbia University and CFN, Brookhaven National Laboratory — We measure the conductance (G) and thermopower (S) of highly conducting single-molecule junctions with Au electrodes. The junctions are formed and measured using a scanning tunneling microscope-based break-junction technique. The target molecules are synthesized with SnMe$_3$ terminations that cleave off in situ, allowing for the formation of direct Au-C covalent bonds to the electrodes[1,2].

We compare the conductance and thermopower for two families of molecules: pi-conjugated polyphenyls, which have a high conductance and thermopower, and sigma-bonded alkyl systems, where we observe a significant thermopower despite the low conductance. For these measurements, we use the most probable thermopower to determine a power factor, GS^2, for each molecular junction studied. Our results show that the molecular thermopower increases systematically and non-linearly with molecular length and also that the power factor is exceptionally large for the case of the biphenyl. [1] Z. L. Cheng, R. Skouta, H. Vazquez et al., Nat. Nano. 6, 353 (2011). [2] W. Chen, J. R. Widawsky, H. Vázquez et al., J. Am. Chem. Soc. 133, 17160 (2011).

Jonathan Widawsky
Columbia University