Probing the Chiral Anomaly via Nonlocal Transport in Weyl Semimetals1 SIDDHARTH PARAMESWARAN, UC Berkeley, TARUN GROVER, Kavli Institute for Theoretical Physics, UC Santa Barbara, ASHVIN VISHWANATH, UC Berkeley — Weyl semimetals are three-dimensional analogs of graphene in which a pair of bands touch at points in momentum space, known as Weyl nodes. Electrons originating from a single Weyl node possess a definite topological charge, the chirality. Consequently, they exhibit the Adler-Jackiw-Bell anomaly, which in this condensed matter realization implies that application of parallel electric (E) and magnetic fields (B) pumps electrons between nodes of opposite chirality at a rate proportional to $E \cdot B$. We argue that this pumping is measurable via transport experiments, in the limit of weak internode scattering. Specifically, we show that injecting a current in a Weyl semimetal subject to an $E \cdot B$ term leads to nonlocal features in transport.

1We acknowledge support of the Simons Foundation, NSF Grant PHY-1066293 and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

Siddharth Parameswaran
University of California, Berkeley