Large-scale Bethe-Salpeter equation calculations of core-level x-ray spectra

J. J. REHR, J. VINSON, K. GILMORE, U. Washington — Recently an approach has been developed for Bethe-Salpeter equation (BSE) calculations of core-level x-ray spectra, which is implemented in the OCEAN package which combines plane-wave, pseudopotential DFT electronic structure, PAW transition elements, GW self-energy corrections, and the NIST BSE solver. The method yields both dipole limited and finite momentum transfer spectra. Here we discuss several recent advances which yield a unified treatment of both extended states and atomic multiplet effects. In particular our approach now includes spin-dependent potentials and hole-dependent lifetimes, and gives an improved treatment of L$_{2,3}$ edges, where contributions to spectral weight come from a mix of two distinct core holes. We have also extended the code interface to include pseudopotential wave functions from ABINIT, QUANTUMESPRESSO, or an interpolation based scheme, thus enabling large-scale calculations with unit cells in excess of 2000 A3. Applications to water and ice structures are briefly discussed.

1Supported by DOE BES Grant DE-FG03-97ER45623 and facilitated by the DOE CMCSN
2Now at NIST, Gaithersburg, MD