Strong reduction of the rigidity of repulsive contact systems at vanishingly low temperatures

HAJIME YOSHINO, SATOSHI OKAMURA, Department of Earth and Space Science, School of Science, Osaka University — Contrarily to ordinary solids, the amorphous solid states of repulsive contact systems such as colloids and emulsions may not be regarded simply as harmonic states. We studied the rigidity, i.e., the shear-modulus of such a class of systems at vanishingly low but finite temperatures using the cloned liquid approach and molecular dynamic simulations. Our result implies breakdown of the commutation of the thermodynamic limit $N \to \infty$ and zero temperature limit $T \to 0$ for the response to shear: we found the rigidity in the limit $T \to 0$ is significantly smaller and exhibit a different scaling compared with that at $T = 0$. Interestingly the rigidity in the limit $T \to 0$ exhibits the same scaling as the pressure, as observed experimentally in emulsions. Detailed numerical examination suggests that the strong stress relaxation is due to contact opening events activated at vanishingly small temperatures.

1Triangle de la physique grant number 117 and Grant-in-Aid for Scientific Research (C) (50335337)