Abstract Submitted for the MAR13 Meeting of The American Physical Society

Theoretical Study of 3D Superconducting Gap Structure in Iron Based Superconductors TETUSRO SAITO, SEIICHIRO ONARI, HIROSHI KONTANI, Nagoya University — The mechanism and symmetry of the superconducting (SC) gap in Fe-based superconductors have been studied actively, and both the spin fluctuation-mediated s_{\pm} -wave SC state and orbital fluctuation-mediated s_{++} -wave SC state had been proposed. To obtain important information on the pairing mechanism, we analyze the Eliashberg gap equation using the 3-dimensional 10-orbital model. When we perform the RPA by considering only the Coulomb interaction, only the spin fluctuations develop, and the SC gap of z^2 -orbital dominant part on the hole pockets is almost zero. The resultant horizontal node is inconsistent with several measurements. However, the orbital fluctuations develop by introducing the quadrupole interaction q (due to the vertex correction) and it is found that (i) the horizontal node disappears and (ii) the crossover from s_+ -state to s_{++} -state is realized. During the crossover, we obtained the loop-node structures on the electron pockets, which are actually observed by ARPES measurements in $BaFe_2(As,P)_2$. We expect that optimally doped $BaFe_2(As,P)_2$ is in the crossover regime between s_{++} -state and s_{\pm} -state.

> Tetusro Saito Nagoya University

Date submitted: 09 Nov 2012

Electronic form version 1.4