Kinetic Monte-Carlo Simulation of Substrate Vacancy Diffusion in C\textsubscript{60} on Ag(111)

JOSEPH DULNY III, SANGZI LIANG, JOHN GROH, JORGE SOFO, RENEE DIEHL, The Pennsylvania State University — Recently, clean Ag(111) surfaces with monolayer C\textsubscript{60} adsorbates have been studied with scanning tunneling microscopy and low energy electron diffraction. These studies revealed that the C\textsubscript{60} forms a commensurate \((2\sqrt{3} \times 2\sqrt{3})R30^\circ\) phase on the Ag(111) substrate and when observed with STM, the C\textsubscript{60} molecules appear either “bright” or “dim.” LEED studies showed that these two species of C\textsubscript{60} are a result of the C\textsubscript{60} taking two different orientations on the Ag substrate, one of which only occurs when the C\textsubscript{60} is located over an Ag lattice vacancy. STM also shows the bright and dim C\textsubscript{60} molecules change location over time. This “flipping” behavior implies that vacancy diffusion in the Ag lattice is taking place. Here, using the kinetic Monte-Carlo algorithm, we model the diffusion of vacancies in the Ag lattice. Data collected from simulations is compared to experimental data on the flipping rate of the C\textsubscript{60} vs. temperature and the bright/dim C\textsubscript{60} ratio vs. temperature. Our model tells us that intralayer vacancy diffusion is taking place and that adsorption of C\textsubscript{60} on Ag(111) results in vacancy creation in the Ag(111) surface. Additional density functional theory calculations support the conclusions of the model.