Nonmagnetic spin current generation as nonequilibrium Kondo effect in a spin-orbit nano interferometer

NOBUHIKO TANIGUCHI, University of Tsukuba — We investigate electric generation of spin-dependent transport through a single-level quantum dot embedded in a ring by help of the Rashba spin-orbit coupling. Although it is known for some time that applying finite bias to this type of the spin-orbit interferometer induces finite spin polarization on the dot, the mechanism of driving such spin polarization to flow has not fully been understood. For instance, in spite of finite spin polarization on a noninteracting single-level dot, no spin current is found to appear. We show theoretically that it is possible to generate electrically large spin-dependent current through an interacting single-level dot, as a combined effect of the Kondo effect and finite bias as well as the Rashba spin-orbit interaction. In contrast to earlier work, we argue the emergent spin-dependent transport in the present model is viewed as a new type of nonequilibrium Kondo effect; it appears in the middle of the Kondo valley and is suppressed by bias voltage larger than the Kondo energy properly renormalized by the Rashba spin-orbit coupling.

1 JSPS Grant-in-Aid for Scientific Research (No. 22540324)