Abstract Submitted for the MAR13 Meeting of The American Physical Society

Transient Surface Photoemission Involving Nonlinear Surface Sheet Polarization Developed on the Doped Bi₂Se₃ Topological Insulator¹ YUKIAKI ISHIDA, HIROAKI KANTO, WALID MALAEB, SHUNTARO WATAN-ABE, ISSP, Univ. Tokyo, CHUANGTIAN CHEN, TIPC, CAS, AKIKO KIKKAWA, YASUJIRO TAGUCHI², YOSHINORI TOKURA³, CERG, RIKEN ASI, SHIK SHIN⁴, ISSP, Univ. Tokyo — Time- and angle-resolved photoemission spectroscopy is performed on the doped Bi₂Se₃topological insulator. We observe unusual variation in the efficiency of photoemission from femto-to-picosecond non-equilibrium particularly when two-dimensional electron gas (2DEG) states are developed on surface, while the surface confinement potential is virtually unchanged. The results indicate that a surface sheet polarization, which is induced nonlinearly by both the photon field and inversion-symmetry-breaking field, grows in magnitude as the 2DEG states become pronounced and opens a so-called surface photoemission channel, div A, that can be varied transiently. Matrix element effects investigated by linearly-polarized angle-resolved photoemission also supports the presence of div A. The asymmetric charge distribution developed around vacuum-surface interface is considered as a key to understand and control Rashba splitting of the 2DEG states.

¹This research is partially supported by KAKENHI(23740256) and by the JSPS through its "FIRST Program" ²also at CMRG, RIKEN ASI ³also at CMRG, RIKEN ASI and Dept. Appl. Phys., Univ. Tokyo ⁴also at CREST, JST

> Yukiaki Ishida ISSP, Univ. Tokyo

Date submitted: 09 Nov 2012

Electronic form version 1.4