S₄ Symmetric Microscopic Model for Iron Based Superconductors

JIANGPING HU, Institute of Physics, CAS, China and Department of Physics, Purdue University

How are cuprates and iron-based high temperature superconductors correlated? What is the common mechanism behind two different families of iron-based superconductors, iron-pnictides and iron-chalcogenides? These two questions are two major challenges in the today’s field of high temperature superconductors. In this talk, we will show when the lattice symmetry, the S₄ symmetry, of the building block, the tri-layer structure of FeAs or FeSe, is properly considered, the low energy physics of iron-based superconductors is governed by a two-orbital Hamiltonian near half filling that can be divided two weakly coupled one-orbital model. We will discuss the microscopic origin and some unique properties of the model, including magnetism and pairing symmetry. The model provides a unified understanding of iron pnictides and iron chalcogenides, and suggests that cuprates and iron-based superconductors share an identical high-Tc superconducting mechanism. The model leads to a natural classification of pairing symmetry according to S₄ symmetry. When the pairing is driven by antiferromagnetic exchange couplings, there are two different s-wave states. One s-wave is the well-studied s± pairing which is in the A phase of S₄ symmetry (even under S₄ symmetry operation), and the other is a new type of extended s-wave pairing which is in the B phase of S₄ symmetry (odd under S₄ symmetry operation). The superconductivity order in the B phase are characterized by opposite signs between up and bottom As(Se) layers in the trilayer Fe-As(Se) structure. The 122 Iron-chalcogenides and the single layer FeSe are most likely in the B-phase. We believe that the model establishes a new foundation for exploring novel properties of iron based superconductors.