Canted Antiferromagnetism in Electron-Doped CaMnO$_3$ under Epitaxial Strain

HIROMASA OHNISHI, SHOJI ISHIBASHI, National Institute of Advanced Industrial and Science Technology (AIST), KIYOYUKI TERAKURA, Japan Advanced Institute of Science and Technology (JAIST) — CaMnO$_3$ (CMO) is a G-type antiferromagnetic (G-AFM) insulator at low temperature. A small amount of electron doping to CMO induces electronic and magnetic state change to a weak ferromagnetic (FM) metal. The recent experiment in thin-film [1] has revealed that the metallic character by electron-doping is sensitive to the strain exerted by the substrate. In this study, we clarify the electron-doping effect for CMO with the existence of epitaxial strain from substrates, by first-principles electronic structure calculation with noncollinear version of local spin density approximation. We show that a metallic character with a weak FM component is brought by the spin-canting from the G-AFM spin alignment (cG-AFM) by the double exchange effect. The canting angle becomes larger with increase of doping-amount and c/a, where c and a represent in-plane and out-of-plane lattice constants, respectively. We also show that a magnetic state change from cG-AFM state to C-AFM one takes place by further enhancement of compressive strain. We analyze our results by comparing with the experimental results.

Hiromasa Ohnishi
National Institute of Advanced Industrial and Science Technology (AIST)

Date submitted: 15 Nov 2012

Electronic form version 1.4