Abstract Submitted for the MAR13 Meeting of The American Physical Society

4 He

adsorption

on α -graphyne¹ YONGKYUNG KWON, HOONKYUNG LEE, Konkuk University, Seoul, KOREA, DAVID M. CEPERLEY, University of Illinois at Urbana-Champaign, IL61801, U.S.A. — Path-integral Monte Carlo calculations have been performed to study ⁴He adsorption on a single α -graphyne sheet that is a hexagonal network of sp- and sp^2 -bonded carbon atoms. Using the ⁴He-substrate interaction described by a pairwise sum of the helium-carbon inter-atomic potentials, we have found that each hexagon of a graphyne can accomodate one ⁴He atom at its inplane center. The first layer of ⁴He atoms adsorbed on this ⁴He-attached graphyne sheet with a composite of C_8He_1 , exhibits various quantum phases depending on the helium coverage. It is found to be in a Mott insulating state at a coverage of 0.0706 Å^{-2} with three ⁴He atoms occupying each unit cell while the helium atoms form a commensurate triangular solid at 0.0941 Å⁻². With the introduction of Ising pseudospins for two degenerate configurations of three ⁴He atoms in a hexagonal cell, the transition from the Mott insulator to the triangular solid can be interpreted as a ferromagnetic transition. In addition we find stable formation of zero-point vacancies in the commensurate triangular solid and their roles in possible realization of supersolidity are under investigation

¹supported by the Basic Science Research Program (2012006887) and the WCU Program (R31-2008-000-10057-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

> Yongkyung Kwon Konkuk University

Date submitted: 09 Nov 2012

Electronic form version 1.4