Distinct Fe-induced magnetic states in the underdoped and overdoped regimes of La$_{2-x}$Sr$_x$Cu$_{1-y}$Fe$_y$O$_4$ revealed by muon spin relaxation

Kensuke Suzuki, Tadashi Adachi, Youichi Tanabe, Hide-Taka Sato, Department of Applied Physics, Tohoku University, Risdy Risdiana, Yasuyuki Ishii, Takao Suzuki, Isao Watanabe, Advanced Meson Science Laboratory, Nishina Center for Accelerator-Based Science, RIKEN, Yoji Koike, Department of Applied Physics, Tohoku University

Zero-field muon-spin-relaxation measurements have been performed in partially Fe-substituted La$_{2-x}$Sr$_x$Cu$_{1-y}$Fe$_y$O$_4$ in a wide range of hole concentration, to investigate the magnetic state induced by the Fe substitution recently suggested from the neutron-scattering measurements [1]. It has been found that a static magnetic order is formed in 1% Fe-substituted La$_{2-x}$Sr$_x$Cu$_{1-y}$Fe$_y$O$_4$ in a wide range of hole concentration where superconductivity appears in Fe-free La$_{2-x}$Sr$_x$CuO$_4$. In the underdoped regime, the Fe-induced magnetic order can be understood in terms of the concept of stripe pinning by Fe. In the overdoped regime, on the other hand, the Fe-induced magnetic order is short-ranged, which is distinct from the stripes. It is plausible that a spin-glass state of Fe spins derived from the RKKY interaction is realized in the overdoped regime. These results suggest a change of the electronic state from the strongly correlated electron state to the Fermi-liquid-like state with hole doping in La-214 high-T_c cuprates [2,3].