Abstract Submitted for the MAR13 Meeting of The American Physical Society

2 dimensional electron gas in chemically stable $SrSnO_3/KTaO_3$ interface HYUKWOO KWON, CHULKWON PARK, KOOKRIN CHAR, Department of physics and astronomy, Seoul National University, MATERIALS & DE-VICES PHYSICS LAB. TEAM — Recent 2DEGs are mostly formed at the interface of $LaAlO_3/SrTiO_3(LAO/STO)$ system, which is explained by the polar catastrophe mechanism. Because of large propensity of oxygen vacancy formation in SrTiO₃, there remains a possibility that the origin of 2DEG of LAO/STO system may stem from extra charge of oxygen vacancy of $SrTiO_3$, not from the polar layer of $LaAlO_3$. In this presentation, we report the realization of 2DEG at the interface of $SrSnO_3/KTaO_3(SSO/KTO)$, which is chemically stable due to extremely stable oxygen stoichiometry. This SrSnO₃/KTaO₃ heterosturcture was epitaxially grown by puled laser deposition and the interface was found atomically matched by transmission electron microscope and reciprocal space mapping. We measured the magnetic property of SSO/KTO heterostructure and acquired a large ferromagnetic signal, which is unchanged in the temperature range of $4 \sim 300$ K by SQUID magnetometer measurement. As $SrSnO_3$ and $KTaO_3$ are non-magnetic materials, this ferromagnetic signal may result from 2DEG at the interface of SSO/KTO. We hope our results can shed lights on the exact mechanism of 2DEGs that are formed at oxide interfaces.

> Hyukwoo Kwon Department of physics and astronomy, Seoul National University

Date submitted: 15 Nov 2012

Electronic form version 1.4