Tunable spin-density-wave order in nickelate heterostructures1 A.
FRANO, Max Planck Institute for Solid State Research, E. SCHIERLE, Helmholtz-
Zentrum Berlin fuer Materialien und Energie, BESSY II, M. HAVERKORT, Y. LU,
M. WU, S. BLANCO-CANOSA, U. NWANKWO, A.V. BORIS, P. WOCHNER,
G. CRISTIANI, H.U. HABERMEIER, Max Planck Institute for Solid State Re-
search, V. HINKOV, Quantum Matter Institute, University of British Columbia,
E. BENCKISER, Max Planck Institute for Solid State Research, E. WESCHKE,
Helmholtz-Zentrum Berlin fuer Materialien und Energie, BESSY II, B. KEIMER,
Max Planck Institute for Solid State Research — Antiferromagnetic spin-density-
wave (SDW) order in metals has been proposed as the basis for a new generation
of spintronic devices. However, SDWs have been observed only in a few materials
to-date, and it has proven difficult to systematically control their properties. Using
resonant x-ray diffraction, we demonstrate SDW order in epitaxial thin films and
superlattices based on metallic RNiO$_3$ with R = La, Nd, Pr. The materials re-
main highly conductive in the SDW state, and the amplitude of concomitant charge
order is dramatically reduced with respect to their bulk analogs. We also show
that the SDW polarization is tunable through two independent control parameters
— epitaxial strain and dimensional confinement of the conduction electrons. Nicke-
late heterostructures are thus a powerful new model platform for SDW physics and
antiferromagnetic spintronics.

1Work was supported by the Deutsche Forschungsgemeinschaft within the framework
of the TRR80, project C1.

A. Frano
Max Planck Institue for Solid State Research

Date submitted: 09 Nov 2012
Electronic form version 1.4