Effect of uniaxial stress on structural and electronic properties of \(\text{BaFe}_2\text{As}_2 \) and \(\text{CaFe}_2\text{As}_2 \)

MILAN TOMIC, HARALD O. JESCHKE, ROSER VALENTI, Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt/Main, Germany — We investigate the effects of the uniaxial tensile and compressive stresses applied along \(a \), \(b \) and \(a+b \) directions in \(\text{BaFe}_2\text{As}_2 \) and \(\text{CaFe}_2\text{As}_2 \) in the framework of ab initio density functional theory calculations. While the systems remain in the orthorhombic phase at moderate pressures, we observe an inversion of magnetism at a critical strain happening when the \(a \) and \(b \) axes approach the tetragonal condition. We discuss our results in view of recent reports of modified magnetic and structural transitions in \(\text{BaFe}_2\text{As}_2 \) under externally applied uniaxial strain and make a connection to phenomenological models proposed for these transitions.

Roser Valenti
Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt/Main, Germany

Date submitted: 27 Nov 2012
Electronic form version 1.4