Cooperative Processes in Restructuring Gel Networks

JADER COLOMBO, Microstructure and Rheology, Institute for Building Materials, ETH Zurich, ASAPH WIDMER-COOPER, School of Chemistry, University of Sydney, EMANUELA DEL GADO, Microstructure and Rheology, Institute for Building Materials, ETH Zurich — Colloidal gel networks are disordered elastic solids that can form even in extremely dilute particle suspensions. Similarly to other network-forming soft materials, including many with important biological function or technological potential, they can locally restructure via breaking and reforming interparticle bonds. Although controlling the link between local restructuring and mechanical response bears enormous potential for designing smart nanocomposites, there is at present little understanding of how local bond changes affect the dynamics of the gel network and the stress transmission through it. Here, using numerical simulations of a model system and a space-resolved analysis of dynamical heterogeneities, we show that bond breaking has non-local consequences and induces cooperative relaxation further away along the network. This provides explicit microscopic insight into why non-local constitutive relations are required to rationalize the non-trivial mechanical response of colloidal gels.

Jader Colombo
ETH Zurich

Date submitted: 09 Nov 2012 Electronic form version 1.4