Explosive Characteristics of Carbonaceous Nanoparticles

LEONID TURKEVICH, JOSEPH FERNBACK, NIOSH/CDC, ASHOK DASTIDAR, Fauske & Associates, LLC — Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index $K_{St} = V^{1/3} (dp/pt)_{max} \approx 10 - 80$ bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC $\sim 10^1 - 10^2$ g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene $K_{St} \sim 200$ bar-m/s, placing it borderline St-1/St-2.

1Work supported through the NIOSH Nanotechnology Research Center (NTRC)