Abstract Submitted for the MAR13 Meeting of The American Physical Society

The Effects of Ca^{2+} on the Dynamics of PIP_2 containing Lipid Bilayers IAN MCCABE, MARTIN FORSTNER, Syracuse University — Changes of intercellular Ca^{2+} concentrations are one of the most ubiquitous signaling events that accompany or precede large scale cellular responses. We are in particular interested in the direct modulation of phosphatidylinositol 4,5-bisphosphate (PIP₂) organization in the membrane due to Ca $^{+2}$. At physiological conditions, PIP₂'s headgroup is multiply negatively charged (> 3 effective charges) and interacts with the cationic Ca^{2+} . By coordinating several PIP₂ head-groups, calcium ions can induce condensation and aggregation of PIP_2 . A series of experiments were conducted on supported lipid bilayers containing physiological quantities of PIP₂. Fluorescence correlation spectroscopy (FCS) was used to study the response of the PIP_2 to changes in the concentration of Ca^{2+} ions. As Ca^{2+} concentration increases, the FCS indicates that PIP₂ goes from a freely diffusing single species to a multiple species system. The diffusion rates of the additional species decrease with increasing [Ca²⁺], thus indicating increasing aggregate sizes with increasing, but physiological relevant Ca^{2+} concentrations. An intriguing effect was observed at very low Ca^{2+} levels. The diffusion rate was consistently measured to increase upon addition of small concentrations of Ca^{2+} before decreasing as the concentrations increased. A series of polymer cushioned bilayers were used to attempt to gain greater insight into the nature of the membrane/support interaction and the nature of this effect.

> Ian McCabe Syracuse University

Date submitted: 17 Jan 2013

Electronic form version 1.4