Lateral quantization of two-dimensional electron states by embedded Ag nanocrystals1 CHRIS VAN HAENSENDONCK, KOEN SCHOUTEDEN, Laboratory of Solid-State Physics and Magnetism, KU Leuven, BE-3001 Leuven, Belgium — We show that quantization of image-potential state (IS)electrons above the surface of nanostructures can be experimentally achieved by Ag nanocrystals that appear as stacking fault tetrahedrons (SFTs) at Ag(111) surfaces. By means of cryogenic scanning tunneling spectroscopy the \(n = 1 \) IS of the Ag(111) surface is revealed to split up in discrete energy levels, which is accompanied by the formation of pronounced standing wave patterns that directly reflect the eigenstates of the SFT surface. The IS confinement behavior is compared to that of the surface state electrons in the SFT surface and can be directly linked to the particle-in-a-box model. ISs provide a novel playground for investigating quantum size effects and defect induced scattering above nanostructured surfaces.

1This work has been supported by the Research Foundation – Flanders (FWO, Belgium). K.S. is a postdoctoral researcher of the FWO.