Abstract Submitted for the MAR13 Meeting of The American Physical Society

Angle dependent upper critical field of overdoped $Ba(Fe_{1-x}Ni_x)_2As_2$ JASON MURPHY, M.A. TANATAR, N. NI, S.L. BUD'KO, P.C. CANFIELD, R. PROZOROV, The Ames Laboratory, D. GRAF, National High Magnetic Field Laboratory — In-plane resistivity measurements were used to study the upper critical field, H_{c2} , of single crystals of iron-based superconductor $Ba(Fe_{1-x}Ni_x)_2As_2$ (x = 0.054 and x = 0.072). An applied magnetic field (up to 35 T) was precisely aligned (with the accuracy better than 0.1° parallel to the Fe-As layers and the measurements were taken for $H \parallel ab$ plane and $H \parallel c$ -axis as function of temperature. The determined $H_{c2}(T)$ clearly differs for the two principal directions. The dependence of the upper critical field on the angle Θ between the field direction and the ab-plane was measured in isothermal conditions at temperatures close to T_{c0} and at low temperatures $T \ll T_c(H=0)$. In both temperature regimes $H_{c2}(\Theta)$ clearly deviates from sinusoidal function, expected for orbital H_{c2} [1]. We discuss the origin of this behavior as possible reflection of the angular modulation of the superconducting gap magnitude and the complex warping of the Fermi surface along the *c*-axis. Work in Ames was supported by the Department of Energy Office of Science, Basic Energy Sciences under Contract No. DE-AC02-O7CH11358.

[1] V. G. Kogan and R. Prozorov, Rep. Prog. Phys. 75, 114502 (2012).

Jason Murphy The Ames Laboratory

Date submitted: 16 Nov 2012

Electronic form version 1.4